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FILM COOLING HEAT TRANSFER WITH HIGH FREE STREAM TURBULENCE

John. J. Schauer
Professor

University of Dayton
Dayton, OH 45469-0210

ABSTRACT

Heat transfer coefficients are shown as functions of downstream
and transverse plate coordinates as determined experimentally for
different blowing ratios near one and for levels of free stream
turbulence from 1 percent to 17 percent of the free stream velocity.
Heat transfer between the plate and the free stream is reduced by the
film cooling at higher levels of free stream turbulence. Heat transfer
is increased on the plate in the region between the film cooling jets at
all levels of blowing ratio for one percent free stream turbulence.
This undesirable augmentation of the heat transfer is modeled
analytically and related to the axial vortices generated near the film
cooling jet inlets. The strength of these vortices and the subsequent
heat transfer increases are related to the blowing ratio.

Nomenclature

As side area under the cooling flow (m?%)

d film cooling hole diameter (1.9cm)

M blowing ratio (p, Ur/p Us)

static temperature (deg. K)

local temperature difference from free stream value(deg. K)
difference between maximum temperature on a constant x/d
plane and the associated free stream value (deg. K)
turbulence intensity (u'/u) (%)

gas specific heat at constant pressure (J/kg deg. K)
convection coefficient, q"/(Te-Ts) (W/m’K)

convection coefficient, q"/(Tew~ Tts) (W/m’K)

empirical constant in equation (2)

local heat flux (W/m?)

radial distance from center of axisymmetric coolant jet (m)
mean local stream wise velocity (m/s)

fluctuating stream wise velocity component (m/s)

mean local vertical velocity (m/s)

mean local transverse velocity (m/s)

velocity related to the vortex strength (m/s)

stream wise dist. from downstream lip of injection hole (i)
vertical distance from injection surface (m)

span wise distance from centerline of injection hole (m)
boundary layer thickness (m)

fluid density (kg/m®)

angle between cooling jet and the plate (radians)

=
50

=

q

e e xpEo

~<'00)N‘<><€2<

David. J. Pestian

Assistant Research Engineer
University of Dayton Research Institute
Dayton, OH 45469-0140

Subscripts:

aw evaluated at y=0 (wall value), with ¢”=0
fc in the film cooling fluid

fs in the free stream fluid

nofc no film cooling

std standard

w evaluated at y=0 (wall value)

INTRODUCTION

Turbine blades in modern aircraft operate with the flow over
them hot enough to melt the blades. Cooling is a necessity and the
cooling flow can at most reach the blade temperature. Since the
cooling flow is cooler than the main flow, it is available for film
cooling after it has completed the blade cooling function. This
experimental and analytical study shows the cooling potential at
blowing ratios near one and at levels of Free Stream Turbulence
(FST) up to 17 percent. The analytical study focuses particularly on
the conditions where heat transfer is augmented rather than having
the desirable heat transfer reducing effect.

This study utilizes the apparatus configured by Bons et al.
(1994) and also used in the jet mixing study of Schauer and Bons
(1994). Experimental data were collected with flow parameters in the
range of typical turbine applications. The Reynolds number based on
film cooling hole diameter was 20,000 and the blowing ratios were
near one. The data presented corresponds to x/d from 0 to 60. The
density ratio between the cooling flow and the main stream was
approximately 0.93.

EXPERIMENTAL FACILITY

The wind tunnel used for the experiments has a 0.38m (width)
by 0.18m (height) cross-section. An elliptical-edge bleed with
vacuum suction is located 12.07cm upstream of the downstream lip of
the film cooling injection hole (designated as x/d = 0). A 1.59mm
diameter steel rod located 2.54cm from the elliptical-edge bleed is
used to trip the new boundary layer and insure a span wise uniform
turbulent boundary layer profile at the injection point. Without
employing turbulence generating devices, the tunnel's free stream
turbulence level is 0.9% (£0.05) and velocity uniformity is within
+2.5%. Free stream turbulence generation is accomplished by two
methods for the present experimental data. A secondary flow is
injected from two opposing rows of holes located on the top and




bottom of the wind tunnel 1.02m upstream of the boundary layer
bleed at a velocity ratio (jet to free stream velocity) of 14 to produce a
turbulence level of 17% (+0.85) at the film cooling injection station.
To provide a turbulence level of 6.5% (£0.3), a standard square grid
is installed 0.94m upstream of the coolant injection point. The film
cooling is injected through a 1.9cm diameter, 35 degree inclined hole
centered in the test section. The injection pipe length from the
coolant access plenum to the exit is 3.5 hole diameters. A diagram of
this experimental configuration is show in Schauer and Bons (2).

The data presented in this report were taken using a 4pum
diameter tungsten hot wire. The hot wire and a flow temperature
thermocouple (0.33mm bead diameter) are mounted on a vertical
traverse. A velocity map of the injection plane (x-z plane at y = 0)
was used to calibrate an orifice plate used to determine the film
cooling flow rate. This flow rate and the local free stream density-
velocity product are used to calculate the film cooling blowing ratio.
The test surface downstream of the film cooling injection point is a
constant heat flux film over a 10 cm layer of urethane foam. Heat
transfer coefficients are based on the known heat flux per unit area
and the temperature difference between the free stream and the local
wall temperature as measured by axially spaced thermocouples in the
plate. The cooling holes were moved sideways relatively to the plate
to permit heat transfer coefficients to be determined as functions of
both axial and transverse positions. Uncertainty in the heat transfer
coefficients is estimated at 4% but the relative values are much
more accurate. Uncertainty in the velocity measurement, estimated at
£2.0%, is attributed to the calibration fit accuracy and the horizontal
displacement between the probe and the flow thermocouple. The
uncertainty in the temperature ratio data is +0.7%.

ANALYTICAL DEVELOPMENT

At a blowing ratio near one, the cooling flow spreads and mixes
slowly in the transverse direction at low levels of FST. Under these
circumstances the axial vortex generated by the main stream flow
sweeping under the cooling jet flow near the jet exit causes
significant changes in the boundary layer where the vortex pair meet
midway between holes.

The vortex strength is analyzed using the moment of momentum
control volume approach from Shapiro (1953) Eq. (1.17) applied to

the control volume L*1*I, shown in Fig. 1.

Ufs L
_—
J
Ufe 4@
............... i . —
COOLING HOLE COOLING
JETS

Figure 1. Control Volume for Vorticity Analysis

As shown in Fig. 1, L is the distance from the hole centerline to
the midpoint between holes, in this case 1.5 d = L. The transverse
component of the force on this control volume is associated with the
reduced pressure under the cooling jet. This force was computed as

F= J.APdAs )

where A, is the area between the jet centerline and the plate and

AP is the difference between the pressure in the main stream and the

average pressure under the jet. This pressure difference was taken to
be

AP = 172 kpug2y @)

Here the combined effect of A, k, and y are functions of the
blowing ratio determined empirically. These empirical values will
effect W, from Eq. 10, which is chosen based on the heat transfer
data.

With the approximation that the force in the z direction given by
Eq. (1) is located near the plate since the pressure differential is
under the cooling flow, the lever arm about the top of the control
volume (axis z = 0, y = L, extending in the x direction) is L. Then
moment of momentum equation reduces to

LF =pu, I*(Vxr),, ®)

Shapiro (1953) relates angular velocity (page 270) to this
moment of momentum, giving

20L%= (VXI)out 4)

Estimating the velocity at the edge of the vortex, W, as the
angular velocity @ times L and combining the above equations gives

W=L®=Akug4/L? )

In order to analyze heat transfer, the boundary layer development
is investigated with the velocity corresponding to the vortex
considered. The ratio of heat transfer coefficient with angular
velocity to the heat transfer without (standard flat plate) is predicted.

Boundary layer growth at the midline between holes is examined
using the control volume shown in Fig. 2. Notice that this control
volume has a downward velocity v(8) coming uniformly in the top
and also the same velocity W coming out one side. The other side is
on the midline and has no mean z component of velocity from

symmetry.
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Figure 2. Control Volume for Boundary Layer Growth Near Midline

The law of conservation of mass for this control volume results in
£ij‘uaj/+Wj‘a§)-—£v(5)—O (©6)
4 dx 5 o 4

The W in the second term of Eq. 6 represents the z component of
velocity assumed constant from y = 0 to 8. The v(3) in the third term
is the vertical downward velocity component. Applying control
volume X momentum to the same control volume and assuming no
pressure changes in the x direction gives

LLd

p4 juay u V(8= +Wjudy 7

Eliminating v(8) between Eq. (6) and Eq. (7) relating the wall
shear to & via the Blausius relationship Eq. (10-18) of Kays and
Crawford (1980) gives

2
~0.0225u% (8, / v ”4—411 i‘ ﬁ‘;‘j [—J d@)_

Ug
L d
u WS - 5_[—«1( ) 25— j—d( j
4 o Uy \O. Ug Uy \O.
(3
With the usual one seventh power profile, Wug = (y/6)"7 we get
1
2 1
ﬁé+ﬁﬁ’_£_023l( ) o Q)
dc Tu,L 1%

With the substitution A = 3** and the boundary condition & = 0
at x = 0 the solution becomes, for W constant

A= %(1 - e"") (10)
where

c=45Wug/7 and n=x/L

in the limit as W approaches zero the standard flat plate
boundary layer solution follows from Eq. (10) as Agq = bx. Notice
that for constant W the boundary layer thickness approaches a
constant value as x gets large.

We have generated a solution for the boundary layer thickness
and via the Blausius relationship, the wall shear. Further, the heat
transfer at a point is proportional to the wall shear stress. Our
solution, however, assumes that the vorticity is constant as generated
in the first x = L past the hole centerlines. While this could be valid
if shear were neglected, our solution is applied at the plate where
wall shear opposes the motion and reduces the vortex strength. The
spreading of the vortex vertically as it goes downstream would also
reduce the velocities associated with it.

In order to maintain mathematical simplicity and with hints from
the measured data, we will assume for x/L greater than 2

=W, I (uz,(1+(n-2))) (11)

This function decays from W/W, = 1 at x/L = 2 to a ratio of 1 to
60 at X/L of 61 effectively reducing W to near zero at large x/L
values. W is determined from Eq. (9) at x/L of 2. The solution of
Eq. (8) with Eq. (10) for W is

W/ufs

A (D—D“‘“ 1-e? _w]
= + D 12)
A, 1+w w
where
D=(1+(n-2)), the denominator of Eq. (11).

At the midline, the ratio of heat transfer with no film cooling to
the heat transfer with dominance of an axial vortex (dominance only
with low FST values) is

Whaoge = (A/Aaa) ™ (13)

This result used with Eq. (12) is compared to the measured heat
transfer data to get a vorticity velocity W at various blowing ratios.
This is essentially picking As .k, and y as functions of blowing ratio.
The empirically selected values are

M W,

0.7 0.10
1.0 0.18
1.5 0.21

Table 1. Empirical Input Based on Heat Transfer
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Figure 3. No Film Cooling Heat Transfer Coefficient

Heat transfer coefficients are presented in Fig. 3 for no film
cooling flow but three levels of FST. We see that there is a clear
effect of FST with h increasing with increasing FST levels. It was
also observed, but not shown here, there was virtually no effect of z
location. The low FST data was within a few percent of standard
results. These data are the base or standard heat transfer coefficients
that are the comparison basis for the film cooling cases.
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Figure 4a. Film Cooling Heat Transfer with 1% FST, M= 0.7

The low FST with film cooling heat transfer coefficients are
shown in Fig. 4. at the limiting blowing ratios. The film cooling flow
with a temperature between the free stream temperature and the plate
temperature is designed to lower the h from the flat plate conditions
shown in Fig. 3. We see that it is not only ineffective but that it
raises the h at z locations near the midline for all axial locations.
This heat transfer augmentation is predicted by the analytical
development. This effect has long been recognized as shown in Jones
and Forth (1986).
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Figure 4b. Film Cooling Heat Transfer with 1% FST, M= 1.5

Figure 5 shows the same data reduced with the addition of
effectiveness data both published and unpublished from the work of
Bons et al. (1994). This heat transfer coefficient based on
temperature difference from adiabatic wall conditions shows
increased h on the midline between the holes at x/d > 10 for low FST.
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Figure 5a. Adiabatic Wall Heat Transfer with 1% FST, M = 0.7
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Figure 5b. Adiabatic Wall Heat Transfer with 1% FST, M = 1.5




Seventeen percent FST with film cooling heat transfer
coefficients are shown in Fig. 6. Here the film cooling is doing the
job it is designed to do, that is reduce the heat transfer coefficient.
Some influence of the axial vortices is seen at x/d of 10 but the
augmentation disappears as the cooling film spreads in the z direction
with increasing X.
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Figure 6a. Film Cooling Heat Transfer with 17% FST, M =0.7

120

—— 1m=(Q"
ke 2%0.26%

= -~ 7m0.8" ]
g1 e 7E0.75%
€ —~F— zew10"
$ e 7m1.26%
E 0 ~A~hkA\ -=/A—- z=0", No Flim Cooilng ]
S B A
0 &-kfrﬁ'ﬁlﬂ'ﬁé Y
» 60
o
"
€
g
-
3
z

20

M=1.5
0 l
0 10 20 30 40 80 80 70 80 90 100

Distance Downstream (x/d)
Figure 6b. Film Cooling Heat Transfer with 17% FST, M = 1.5

This increased spread is associated with the mixing effect of the
FST and is shown in Schauer and Bons (1994). The level of heat
transfer is higher because the baseline from Fig. 3 is higher but the
percent reduction in heat transfer has improved as FST has increased.
Figure 7. shows the same data, again reduced with the addition of
effectiveness data both published, and unpublished, from Bons et al.
(1994).  This heat transfer coefficient based on temperature
difference from adiabatic wall conditions now shows a desirable lack
of dependence on z at high levels of FST as does Fig. 6.

In a range of 0 < x/d < 30 the heat transfer was less for the M =
0.7 blowing ratio. For the Tu = 1% case the M = 0.7 blowing ratio
produced the strongest axial vortices according to the analysis and
consequently poorer results at x/d values larger than 30. The mixing
in both the higher FST cases was enough that little effect of blowing
ratio could be observed for x/d values greater than 30. Figures 5 and
7 show only a small effect of either M or FST level, particularly on
the film cooling hole centerline.
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Figure 7a, Adiabatic Wall Heat Transfer with 17% FST, M = 0.7
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Figure 7b. Adiabatic Wall Heat Transfer with 17% FST, M = 1.5

The analytical predictions are compared to the low FST heat
transfer data in Figure 8. The magnitude of the change from the no
film cooling case is predicted correctly for the M = 0.7 blowing. The
prediction is nearly within experimental uncertainty at M = 1.0 and
also at M = 1.5 for x/d values less than 45.
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Figure 8a. Comparison of Analysis Data at 1% FST, M= 0.7
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Figure 8b. Comparison of Analysis Data at 1% FST, M= 1.0

The analytical model over predicts the heat transfer
augmentation at larger x/d’s for M = 1.5. The prediction at M = 1.5
could be improved if the vortex decay rate was changed in Eq. (11).

The blips in the analytical results are because the deviation from
the standard flat plate found analytically in Eq. (13) were applied to
the no film cooling data rather than result s derived from Kays and
Crawford (1980) Eq. (12-26). As seen in Fig. 3 the no film cooling
data differs by only a few percent from the Kays and Crawford (1980)
equation for this case of low FST.

The blips in the data at x/d of 50 and 74 are the result of two
thermocouples partially detached from the heated film surface and are
bad data.

CONCLUSIONS

1. Film cooling with aligned holes is only detrimental at low levels of
FST. The axial vortices generated augment the heat transfer more
than the shielding effects reduce it. Designers of film cooling
configurations must be careful using data generated at low FST levels
since mixing will be minimal and the potential for missing the effects
seen in an actual high FST application are significant.

2. The undesirable heat transfer augmentation at low levels of FST is
consistent with the predictions of the effects of an axial vortex
generated by the whirling of the main stream flow under the film
cooling jets.

3. Heat transfer between the free stream and the wall with film
cooling will be minimized at an optimum level of FST. Increasing
FST has two effects. The first tends to reduce heat transfer because
of the increased mixing. The second tends to increase heat transfer
because of the increases in the base line flat plate heat transfer as
shown in Fig. 3.

4. With FST at 17%, the heat transfer coefficient on either a Tw-Tg
basis or Tw-Taw basis is reduced about 20% for x/d greater than 20.

5. Aligned film cooling holes can produce heat transfer uniform in
the transverse direction at all but very low values of FST for
distances from the holes of larger than about twenty film cooling hole
diameters downstream.
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